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Abstract

A new asymptotic method, based on evanescent wave tracking, is presented for the determination of guided
modes on slab waveguides with inhomogeneous permittivity profile.

Summary

Exact solutions for the propagation characteristics
of inhomogeneous film waveguides can be obtained

only for a few permittivity profiles 1-3. If the per-
mittivity varies slowly over a length interval equal to
the local wavelength, the class of solutions can be en-

larged by recourse to asymptotic (WKB) methods 1.
Here we present an entirely new approach that fur-
nishes the asymptotic expansion of the exact solution
of the wave equation without the limitations imposed
by the WKB procedure., The new approach is based
on evanescent wave tracking whereby local evanes-
cent plane wave fields are matched to an inhomogene-
ity profile in such a manner that the composite field
behaves as a guided mode.

The general method has been described elsewhere4
but its systematic application to the guided mode pro-
blem, as developed here, has not previously been re-
ported. We assume a field solution of the form

u(r) ~ explikd(r)], r = (x,2) (1)

where k is the wavenumber in vacuum and
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When (1) and (2) are substituted into the two-dimen-
sional (y-independent) wave equation with variable re-
fractive index n(x),

[v 2+ kznz(x)] u(r) = 0, v2=82/8x2+82/8z2, (3)

and the coefficient of each power of k is set equal to
zero, one obtain the sequence of equations
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The eikonal equation (4) and the lowest order trans-
port equation (5) yield the local plane wave field

u(z) ~exp[ikS(r)] exp[A_(z)], (7)

o]

33

while the higher order transport equations in (6) pro-
vide correction terms, By assuming complex phase
and amplitude functions

S(x) = R(x) + il(z), A )=
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(8)

W) Hiv (r),

where R, I, W and Vo are real, and defining the
phase paths and equiphase contours tangent to the per-
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one may derive the trajectory equations

d (Bs )=v5, d (et )= , 1

ds ~° dt ~°) ve (o)
and, from (4),
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Here, s and t are lengths measured along the phase
paths I = constant and the equiphase contours R = con-
stant, respectively, The transport equations become
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The solution of these equations is accornplished4 by
determining the phase paths and equiphase contours
from (10), utilizing the trajectory grid to find

o= dl/dt or 8= dR/ds, integrating along the appropri-
ate path to find I or R, and finally performing the inte-
grations in (12) - (15) to find W and Vin® Note that

only o or B need be found by integration since these
parameters are related via (11),

When these equations are applied to guided mode
propagation along z, the following conditions must be
imposed: 1, the equiphase contours should be planes
perpendicular to z (i.e., x Zt, z = s); 2. the phase
variation of u should be linear; 3. the amplitude of u
should be independent of z., Hence
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constant, a(x)= [ng - nz(x)] (16)
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The requirements 8w0/82 0= 8vo/8x (see conditions

1, and 3. ) then imply that (12) is satisfied exactly and
that (13) can be integrated to yield

dx
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where p= 8vo/82 is a constant (condition 2). Then

the lowest order field uo(g) becomes

uo(;;) ~[ a(x)] -1/2 exp [iknoz-kfa(x) dx - ipz

+n.p fdx/oz(x)] R (18)

with p chosen so that ug remains bounded for all x.

Note that (18) is an exact solution of (11), (12) and
(13). By applying conditions 1. - 3. to the higher or-
der transport equations (14) and (15), one finds that
these can also be integrated exactly.

To test the validity of the procedure described
above, we have applied it to two profiles for which

. . 2
exact solutions of the wave equation are available™ 3:
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a) nz(x) = ni -a"x", sech2 bx (19)
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In each case, we have found that (18) and the solution
of the higher order transport equations furnish the
asymptotic expansion (in inverse powers of k) of the
exact solution, which involves Hermite polynomials
for case a) and Legendre functions for case b), We
have also been able to generate higher order guided
modes in addition to the lowest order mode whose field
has a maximum at x = 0 and monotonic decay for

|x| > 0. The manner of derivation of these results
will be described in detail.

Having confirmed the validity of the method, we
have treated various permittivity profiles (in partic-
ular, polynomial variations) for which exact solutions
of the wave equation are not available. The resulting
modal waveforms and dispersion properties will be
presented. It is also possible to treat frequency de-
pendent refractive indexes,

The procedure in this paper holds considerable
promise for enlarging the reservoir of analytical solu-
tions for modal propagation in inhomogeneous thin film
waveguides, and for aiding in the synthesis of low dis-
persion profiles, Even when explicit analytical solu-
tions cannot be found, the numerical treatment of the
transport equations (12) - (15) is considerably simpler
than that of the wave equation,
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