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Abstract

A new asymptotic method, based on evanescent wave tracking, is presented for the determination of guided
modes on slab waveguides with inhomogeneous permittivity profile.

Summa ry while the higher order transport equations in (6) pro.

vide correction terms. By assuming complex phase
and amplitude functionsExact solutions for the propagation characteristics

of inhomogeneous film wave guides can be obtained
1-3

only for a few pe rmittivity profiles . If the per-

mittivity varies slowly over a length interval equal to

the local wavelength, the class of solutions can be en-
,

s(~) = R(:) + iI(xJ, Am(s) = win(:) + ivmk), (8)

where R, I, Wm and Vm are real, and defining the

phase paths and equiphase contours tangent to the per.

pendicular unit vectors so and&, respectively, 4

larged by recourse to asymptotic (wK13) methods ‘.
Here we present an entirely new approach that fur-
nishes the asymptotic expansion of the exact solution
of the wave equation without the limitations imposed
by the WKB procedure. The new approach is based

on evanescent wave tracking whereby local evanes-

cent plane wave fields are matched to an inhomogene -

ity profile in such a mariner that the composite field
behaves as a guided mode.

one may derive the trajectory equations

The general method has been described elsewhere4
but its systematic application to the guided mode pro-
blem, as deveioped here, has not previously been re-

ported. We assume a field solution of the form

(lo)

and, from (4),

u(~) - exp[ik$(~)] , ~ = (x, z) (1) B2-a2=n2. (11)

Where k is the w avenumbe r in vacuum and
Here, s and t are lengths measured along the phase

paths I = constant and the equiphase contours R = con-

stant, respectively. The transport equations become

Am(z)

*(:) = S(lj + f’ — .
m.() km+ 1

(2)

When (1) and (2) are substituted into the two-dimen-

sional (y-independent) wave equation with variable re -
fractive index n(x), (12)

[ 1V2+ k2n2(x) u(~) = o, v 2= a2 /%2+ a2/az2, (3) dv dwo
213$ +2UT +~. (Q:o)= o (13)

and the coefficient of each power of k is set equal to
zero, one obtain the sequence of equations and for m > 1,—

(~S)2.= n2 (4)

( dw dv

)

-Z ff++p+ + ’21 (vwj. ~rn-j- 1

j=O
V2S+2V.S. VAO=0 (5)

- ~v. . rj’v
J

m-j-l )+vzwm-l=o (14)I-I-bl
i 2vS . VAm +~vAj. vA ~+ v 2Am- ~ = O,

j=O m-j -

m=l,2. . . (6)

(
dw dv

)

m- 1

Q3* -@--& + ~ (Vvj . VW
j=O m-j- 1The eikonal equation (4) and the lowest order trans-

port equation (5) yield the local plane wave field

-t17w. . Qv ~-j-l)+vzvm-l = o
J

Uo(:) -exp[iks(~)] exp[Ao(~)], (7) (15)

33



The solution of these equations is accomplished by

determining the phase paths and equiphase contours
from ( 10), utilizing the trajectory grid to find
@ z dI/dt or /3 = dR, /ds, integrating along the appropri-

ate path to find I or R, and finally pe rfo rming the inte-
grations in (12) - (15) to find Wm and Vm. Note that

only a or /3 need be found by integration since these

parameters are related via (11).

When these equations are applied to guided mode
propagation along z, the following conditions must be

imposed: 1. the equiphase contours should be planes

perpendicular to z (i. e. , x * t, z = s ); 2. the phase

variation of u should be linear; 3. the amplitude of u
should be independent of z. Hence

[
22 1

1/2
~ = no = constant, a(x) = no - n (x) (16)

The requirements awo Iaz = O = *O /ax (see conditions

1. and 3. ) then imply that (12) is satisfied exactly and

that (13) can be integrated to yield

=lna
dx

w ‘1’2+nop Ja- ,0
(17)

where p ~ avo /3z is a constant (condition 2). Then

the lowest order field Uo(:) becomes

Uo(r) -[ Q(X)] -1’2 [exp iknoz-k~a(x) dx - ipz

+ nop ~dx/a(x)] , (18)

with p chosen so that U. remains bounded for all x.

Note that (18) is in exact solution of (11), (12) and

(13). By applying cmions 1. - 3. to the higher or-

der transport equations ( 14) and (15), one finds that
these can also be integrated exactly.

To test the validity of the procedure described

above, we have applied it to two profiles for which
2,3:

exact solutions of the wave equation are available

a) nZ(x) = n: - a2x2, b) n2(x) = n: sech2 bx (19)

In each case, we have found that (18 ) and the solution

of the higher order transport equations furnish the

asymptotic expansion (in inverse powers of k) of the

exact solution, which involves Hermite polynomials
for case a) and Legendre functions for case b). We
have also been able to generate higher order guided
modes in addition to the lowest order mode whose field
has a maximum at x = O and monotonia decay for

1X1 > 0. Th e mariner of derivation of these re suits

will be described in detail.

Having confirmed the validity of the method, we
have treated various pe rmittivity profiles (in partic-

ular, polynomial variations ) for which exact solutions

of the wave equation are not available. The re suiting
modal waveforms and dispersion properties will be

presented. It is also possible to treat frequency de-
pendent refractive indexes.

The procedure in this paper holds considerable
promise for enlarging the reservoir of analytical solu-
tions for modal propagation in inhomogeneous thin film

waveguides, and for aiding in the synthesis of low dis -
pe rsion profiles. Even when explicit analytical s olu-

tions cannot be found, the numerical treatment of the
transport equations (lz) - (15) is considerably simpler

than that of the wave equation,

References

1.

2.

30

40

W. Streifer and C. N. Kurtz, “scalar Analysis
of Radially Inhomogeneous Guiding Media, ‘‘

J. O. S. A. , 57 (1967) p. 779-786.—

D. Marcuse, “Light Transmission Optics, “ van
Nostrand Reinhold, New York, 1972.

E. T. Kornhauser and A. D. Yaghjian, “Modal

solutions of a point source in a strongly focusing

medium, “ Radio Science, ~ (1967) p. 299-310,

S. Choudhary and L. B. Felsen, “Analysis of

Gauss i an beam propagation and “cliff raction by in-
homogeneous wave tracking, “ Proc. IEEE, ~
(1974), p. 1530-1541.

Acknowledgement

This work was supported by the National Science
Foundation under Grant No. ENG- 7522625.

34


